Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Zhi-Cheng Ma and Xin-Hua Li*

School of Chemistry and Materials Science, Wenzhou Normal College, Zhejiang, Wenzhou 325027, People's Republic of China

Correspondence e-mail: lixinhua01@126.com

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.046$
$w R$ factor $=0.123$
Data-to-parameter ratio $=15.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Isonipecotate chloride

 of an isonipecotate cation and a Cl^{-}anion linked by intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ interactions into a three-dimensional network structure.
Comment

In the synthesis of crystal structures by design, the assembly of molecular units in predefined arrangements is a key goal (Desiraju, 1995, 1997; Braga et al., 1998). Directional intermolecular interactions are the primary tools in achieving this goal (Zaworotko, 1997; Braga \& Grepioni, 2000).

The title compound, (I), consists of a isonipecotate cation and a Cl^{-}anion (Fig. 1). The bond lengths and angles (Table 1) are within normal ranges (Allen et al., 1987). The ring (N1/ C1-C5) is not planar, having a total puckering amplitude $Q_{\mathrm{T}}=$ 0.571 (2) A (Cremer \& Pople, 1975) and a distorted chair form [$\varphi=157.9(3)^{\circ}$ and $\left.\theta=177.9(3)^{\circ}\right]$. It has a pseudo-mirror plane passing through atoms N 1 and C 3 , as can be deduced from the torsion angles (Table 1).

In the crystal structure of (I), there are multiple intermolecular interactions, such as $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ (Table 2, Fig. 2), generating a three-dimensional network structure (Fig. 2).

Figure 1
The structure of (I), with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ interaction is shown by a dashed line.

Received 3 January 2006
Accepted 28 February 2006

Experimental

The title compound was synthesized by the hydrothermal method from a mixture of isonipecotic acid $(0.04 \mathrm{~g}, 0.3 \mathrm{mmol}), 2,2^{\prime}$-bipyridine ($0.05 \mathrm{~g}, 0.3 \mathrm{mmol}$), copper(II) chloride dihydrate ($0.05 \mathrm{~g}, 0.3 \mathrm{mmol}$) and water $(8.0 \mathrm{ml})$ in a Teflon-lined stainless steel reactor $(15.0 \mathrm{ml})$. The solution was heated at 423 K for 4 d . After reaction, the vessel was slowly cooled to room temperature to give colourless crystals of (I) (yield $0.012 \mathrm{~g}, 30 \%$; m.p. 521-522 K).

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{NO}_{2}{ }^{+} . \mathrm{Cl}^{-}$
$M_{r}=165.62$
Orthorhombic, $P_{2} 2_{1} 2_{1}$
$a=7.0405(7) \AA$
$b=7.4902(7) \AA$
$c=15.2806(15) \AA$
$V=805.82(14) \AA^{3}$
$Z=4$
$D_{x}=1.365 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Bruker SMART CCD area-detector diffractometer
ω scans
Absorption correction: numerical
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.86, T_{\text {max }}=0.93$
3980 measured reflections
Mo $K \alpha$ radiation
Cell parameters from 352
reflections
$\theta=2.7-25.1^{\circ}$
$\mu=0.42 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, colourless
$0.36 \times 0.31 \times 0.18 \mathrm{~mm}$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0636 P)^{2}\right. \\
& +0.4526 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2{F_{\mathrm{c}}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\text {max }}=0.76 \mathrm{e}^{-3}{ }^{-3} \\
& \Delta \rho_{\min }=-0.22 \mathrm{e}^{-3} \\
& \text { Absolute structure: Flack (1983), } \\
& \text { with } 568 \text { Friedel pairs } \\
& \text { Flack parameter: } 0.40 \text { (13) }
\end{aligned}
$$

Figure 2
A packing diagram for (I). The $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ interactions are shown by dashed lines.

H atoms were positioned geometrically, with $\mathrm{O}-\mathrm{H}=0.82 \AA, \mathrm{~N}-$ $\mathrm{H}=0.90 \AA$, and $\mathrm{C}-\mathrm{H}=0.97$ and $0.98 \AA$ for methylene and methine H , respectively, and constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=x U_{\text {eq }}(\mathrm{C}, \mathrm{N}, \mathrm{O})$, where $x=1.5$ for hydroxyl H and $x=1.2$ for all other H. The value of the Flack parameter suggests inversion twinning.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Johnson \& Burnett, 1996); software used to prepare material for publication: SHELXTL (Bruker, 2002).

The authors acknowledge financial support by the Zhejiang Provincial Natural Science Foundation of China (grant No. Y404294), and the ' 151 ' Distinguished Person Foundation of Zhejiang Province.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Braga, D. \& Grepioni, F. (2000). Acc. Chem. Res. 33, 601-608.
Braga, D., Grepioni, F. \& Desiraju, G. R. (1998). Chem. Rev. 98, 1375-1405.
Bruker (2002). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Desiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311-2327.
Desiraju, G. R. (1997). J. Chem. Soc. Chem. Commun. pp. 1475-1482.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Johnson, C. K. \& Burnett, M. N. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Zaworotko, M. J. (1997). Nature (London), 386, 220-221.

[^0]: © 2006 International Union of Crystallography All rights reserved

